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The land ownership rate. (a) Firstly, the sampling distribution of the random variable P should be
Change of Range
determined.
E(P) =p =0.70

Var(p) = 22 = 2205 = 0.0021
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and it can be said that P ~ N(0.70,0.0021) from the information given 035-070 . » < 0-75—0-70) = P(~ 3.2732 < Z < 1.910).

=p(20 <
above. Accordingly, the requested probability is found in the standard normal 0021 10.0021
distribution table as is calculated as.®

@ Those Who Own The Field @ Other Villages " P(P > 0. 75) — P( P-0.70 > 0.75—0.70)
The Land ownership 00021 1/0.0021

= P(Z 2 "j(%") = 1.0910

_ _ _ o Let's calculate the probability of getting heads at least 60 times when a coin
LetX ,X,.., X beindependent random variables with the same distribution is tossed 100 times. This probability can be easily calculated from the

_ _ 2 Binomial Expansion. Since , the probability sought is P(x = 60) and binomial
with expected value p variance o . random variable having parameters (n, p) is given by,

Here, we will introduce and moment generating functions (MGFs). Moment
generating functions are useful for several reasons, one of which is their
application to analysis of sums of random variables. Before discussing This probability can be calculated as - E[“’” l
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Given that 100 trials are large enough for this example, the probability
pi) = (f) pPra—p),  i=01,...,n > 60) is approximated to the

100 > (X;'_ > X
MGFs, let's define moments.The nth moment of a random variable X defined P(x > 60) = 1%” P(X = x) = 1§° (f_o)(%)"(%)w”"‘ _ (L)“’“ lg) 190 _ 4, 02844 60) = ¥ (X 260) =P = =L > =—— [=P(Z = 2) = 0.0228

x= x= SR x=60 100
to be E[X"]. The nth central moment of X is defined to be E[((X — E[X])")]. > " > Var| X X,
If the moment generating function of random variables is in the vicinity of the The Central Limit Theorem). Let X, be the number of heads in each toss of shape according to the theorem. The difference is very small. The larger the

is calculated.. The same probability can be approximated by this theorem ( x=60

zero point, if n — oo, it is the coin. Where X:= X + X +..+X__is the total number of heads in 100 sample size n, the smaller the difference.®
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flips of the coin. Also we know that from Bernoulli Random Variable
X — P(x = 60). Trials are independent of each other E(X) = 100(1/2) = 50
are Var(X) = 100(1/2)(1/2) = 25.

- N(0,1).

We know the true population proportion is p = 0.52. So the question is asking
about the chances that the sample proportion would come out less than 0.5.
The standard deviation of would be:

p(1-p) _ /052(048) _
\/ n '\/ 1000 =0.0158

Since the population situation is roughly symmetric (0.52 versus 0.48) the
distribution of the sample proportion would follow the normal curve. Thus to
compute the probability, we calculate the standard score...

_ (05-052)
~0.0158 ~1.27 .
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.02 .03 .04 .05 .06 .07 .08 .09

.5000 .5040 .5080 .5120 .5160 5199 .5239 5279 .5319 5359
5398 .5438 5478 .5517 5557 5596 .5636 .5675 5714 5753
5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 6517
16554 .6591 .6628 .6664 .6700 .6736 6772 .6808 .6844 .6879
.6915 .6950 .6985 .7019 7054 .7088 7123 7157 .7190 7224

If a Dice is rolled, the probability of rolling a one is 1/6, a two is 1/6, a three is
also 1/6, etc. The probability of the die landing on any one side is equal to
the probability of landing on any of the other five sides. Suppose if there are
about 1000 students in a school and each of them is made to the role the
same dice then the collection of random variables generated from the above
experiment will be sufficiently large and on the histogram, it will tend to
become a Normal Distribution.
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